Astronomy: Taking Pictures of the Night Sky

Thursday 1/21/2021 - 3/3/2021 6:15 - 7:00 pm

Zoom: https://us02web.zoom.us/j/85949382384?pwd=R08xKzZuRXAxNkk3dXErSk1BSmpSQT09

David M. Caditz Ph.D.

What you will need:

- 1. iPhone
- 2. NightCap camera app. (<u>https://nightcapcamera.com/nightcap-camera/</u>)
 - a) Please familiarize yourself with the online tutorials
- 3. Tripod or equivalent camera mount: (e.g., <u>https://www.amazon.com/s?k=iphone+tripod</u>)
- 4. Shutter release
 - a) Some tripods come with remote shutter release.
 - b) You can also use the iPhone headphone volume up/down button.

Optional equipment:

- 1. Photo editing app (e.g., <u>https://apps.apple.com/us/app/snapseed/id439438619</u>)
- 2. Binoculars. Telescope or telephoto lens
- 3. iPhone adapter (e.g., <u>https://www.amazon.com/s?k=iphone+telescope+adapter</u>)
 - a. This is to mount the iPhone to the binoculars or telescope

Week 1: Photographing the Moon

- o Dark location
- o Atmosphere
- Phases and shadows
- o Focus, ISO, Shutter speed

o Scenic vs Close- up

Apps to consider:

- Planets (<u>http://www.qcontinuum.org/planets</u>)
- Moon Phase and Lunar Calendar (<u>https://apps.apple.com/us/app/moon-phases-and-lunar-calendar/id1126370589</u>)
- Exif Metadata (<u>https://apps.apple.com/us/app/exif-metadata/id1455197364</u>)

Moon Data:

https://nssdc.gsfc.nasa.gov/planetary/factsheet/moonfact.html https://community.dur.ac.uk/john.lucey/users/lunar_sid_syn.html

- Mass = 0.012 Earth
- Radius = .27 Earth
- Orbital Radius: 3.8 x 10^5 KM = 60 X Earth radius
- Orbital Period:
 - Sidereal 27.32 days (relative to stars)
 - Synodic 29.53 days (relative to Earth)
- Crater Theophilus:
 - o 100Km diameter. 4000m deep, central mountain 1400m high
 - o Grand Canyon 1800m deep

Theories of Moon Formation:

- Capture (But Earth and Moon are very similar in chemical composition)
- Fission (Spinning earth split. Hard to make happen)
- Co-formation (You might expect moon to have similar iron core as Earth)
- Giant Impact (explains why moon has small iron core)

Week 2: The Planets

- Visualizing the Solar System
 - Earth-centric vs Sidereal
 - o https://www.theplanetstoday.com/index.html
 - o https://eyes.nasa.gov/apps/orrery/#/home

- Planet Comparison
 - o https://ssd.jpl.nasa.gov/?planet_phys_par
 - o https://callumprentice.github.io/apps/planet_compare/#
- Example Photos:
 - o <u>https://www.ericteske.com/2012/04/iphone-astrophotography-of-venus.html</u>

Week 3: Eyes, Optics, CCDs, Formation of the Solar System

Human eye dark adaptation:

- Pupils open, change from cones to rods.
- 20 mins to adjust to darkness.
- Astronomers use dim red flashlight to not interfere with dark adaptation.
- Averted vision.

Optics lens and focal plane:

Light entering a lens is bent to the focal plane

CCD: "grid of buckets"

iPhone X: 4000 x 3000 grid = 12,000,000 pixels

Solar System Composition and Theories of Formation

Nebular Hypothesis (<u>https://en.wikipedia.org/wiki/Nebular_hypothesis</u>)

Stars form from gravitational collapse of Giant Molecular Cloud (mostly hydrogen)

Frost Line: water, ammonia, methane, carbon dioxide, carbon monoxide

Week 4:

Note: Mars Landing 11:15 am PST Thursday February 18!

https://mars.nasa.gov/mars2020/timeline/landing/watch-online/

1. Stars Mode

Nightcap Stars Mode

- 1. Set up camera on tripod in dark location
- 2. Open NightCap
- 3. Point toward desired constellation
- 4. Select Stars Mode
- 5. Tap to dismiss info screen
- 6. Press shutter to start photo it will automatically stop in a few seconds

Orion Constellation

7. The Messier Catalog

In 1758 Charles Messier, searching for comets.

110 objects in the Northern hemisphere sky. M1 – M110

https://www.nasa.gov/content/goddard/hubble-s-messier-catalog

M31 Andromeda Galaxy

M45 The Pleiades Star Cluster

Week 5:

1. Star Trails

Nightcap Star Trails Mode

- a. Find North direction.
- b. Choose a nice foreground. (No bright lights!)
- c. Set up camera on tripod.
- d. Wait for dark sky.
- e. Nightcap: select star trails mode (tap to dismiss info screen.)
- f. Press shutter button to start. (it is nice to use a remote shutter release)
- g. Wait about 10-30 minutes
- h. Press shutter button again to stop

2. Astronomy Distances

Speed of light: 670,616,629 mph

186,282 miles per second299,792 kilometers per secondIt takes 8 minutes 19 seconds for light to travel from Sun to Earth.

Light Year: How far does light travel in 1 Year? **300,000** kilometers/sec x **60** sec/min x **60** min/hour x **24** hour/day x **365** day/year = 9,400,000,000,000 kilometers

Nearest stars to Earth (not including Sun):

		Star system	Distance in light-years
1	• 🕘 🕘	Alpha Centauri	4.24-4.37
2	0	Barnard's Star	5.96
3	•	Wolf 359	7.78
4		Lalande 21185	8.29
5	•	Sirius	8.58
6		Luyten 726-8	8.73
7	0	Ross 154	9.68
8	•	Ross 248	10.32
9		Epsilon Eridani	10.52
10		Lacaille 9352	10.74
11		Ross 128	10.92
		A SUBJECT BALL AND DE LA CASE & L	

Nearest Galaxies:

Andromeda Galaxy: 2.5 million LY

3. Hubble Telescope Archive

https://hubblesite.org/resource-gallery/images

Week 6:

1. Your Photos?

2. The Cosmic Distance Ladder

How do we know how far away objects are?

- 1. Orbital Dynamics (planets)
 - a) Astronomical Unit: (1AU = 150,000,000 km)

Planet	Period (years)	Radius (AU)
Mercury	0.24	0.39
Venus	0.6	0.72
Earth	1.00	1
Mars	1.88	1.52
Jupiter	11.86	5.20
Saturn	29.46	9.54
Uranus	84.01	19.19
Neptune	164.82	30.06

G M /(4 π^2) P² = R³

- 2. Parallax (stars up to a few thousand light years)
 - a) Parsec: (= 3.26 LY)

- 3) Standard Candles
 - a) Cepheid Variables (Nearby Galaxies 50 million LY)

https://astronomy.com/news/2018/01/mapping-the-cosmos-withcepheid-stars

b) Type 1a Supernovae (up to ~10 billion LY)

4) Redshift (13 billion LY – age of universe)

